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> Conclusions

• Iron absorption fluxes in Caco-2 cells were determined experimentally.
• A mathematical model was developed that allows predicting the amount of iron entering

the cell at a given time, considering different initial iron concentrations in the intestinal
lumen (apical side).

• The model was developed using a nonlinear regression with a genetic programming
method, adding an additional parameter optimization stage.

• The model obtained can accurately represent the experimental data and captures the main
characteristics of the biological phenomenology of the system.

> Introduction

Iron is a trace metal essential for most living organisms. Iron levels present in a cell must
be highly controlled since increased or decreased iron concentrations can trigger numerous
diseases such as hemochromatosis and anemia.

In humans, control of iron levels in the organism lies on the regulation of intestinal absorption,
as there is no specialized mechanism for its excretion. The absorption process can be divided
in three stages: first, iron enters to cells as a ferrous ion from the intestinal lumen through
the transporter protein DMT1 located on the apical (lumen) side of the cell. Then the metal
is transported within the cell, and finally it is transported outside the cell on the basolateral
(blood stream) side through the protein FPN1 (Fig.1).
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Figure 1: Main components of intestinal non-heme iron absorption.

Due to the high relevance and complexity of the iron absorption process, a mathematical
model is required that can help describe the amount of iron that enters an organism under
different conditions. Unfortunately, little information is available regarding the components
involved in the phenomenon and their interactions. Hence, a methodology that allows creat-
ing a model based on experimental data, without knowing the system in full detail is required.
The objective of this work is to obtain a mathematical model that allows representing iron ab-
sorption fluxes in time, for different initial iron concentrations on the apical media, using
genetic programming.

> Methods

In vitro procedure
The amount of iron entering the cell and passing through to the basolateral media on the
first 15 minutes after iron exposure on the apical media was determined (training data set).
DMT1 protein levels were assessed from the initial iron transport rates for different apical iron
concentrations ( validation data set) (Fig. 2).

In silico procedure
Models for iron flux were built using a symbolic non-linear regression process using a genetic
programming algorithm. Parameters and main criteria for algorithm training are described
in Table 1. A parameter fitting stage for every tree was added before evaluating the fitness
function. The obtained models were validated in two ways: measuring their ability to capture
the validation data set and through the Jackknife cross-validation (leave-one-out) method.

Table 1: Parameters used for GP training.
Parameters Value or criteria
Population size 500
Number of generations 100
Recombination probability 0.9
Mutation probability 0.1
Elitism keep the best
Function set cos(), sin(),+,−,×, /, ab, ln(), exp()
Terminal set Var: C0, t; Const: 1, 5, 10, 100, 1000
Initial population Full, Grow, Ramped-Half-and-Half
Tree depth limit 17
Selection methods Roulette, tournament
Fitness Function Mean Square Error (MSE)
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> Results

Empirical model obtained by GP algorithm

f (C0, t) = sin(β1C0) + sin(β2C0) + sin(β3 + t(sin(β4C0))) + t(sin(β5C0)) (5)

Model simulation
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Figure 2: Iron uptake experimental data and best model simulation. Circles correspond to the average value,
error bars indicate standard deviation for each sample and the curve plotted correspond to simulation

results for the model described by Eq. 5 (R2 = 0.86)

> Validation

Simulation of validation data set
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Figure 3: Initial rates of absorption experimental data and model prediction. Blue circles correspond to the
average value, error bars indicate standard deviation for each sample and red circles correspond to

simulation results for the model (R2 = 0.89)

Jackknife validation

Table 2: Main results of Jackknife validation
Parameter Value Pseudo-Parameters Confidence Intervals
β1 4.47 4.47 ±3.69 × 10−2

β2 6.39 6.40 ±2.48 × 10−2

β3 4.54 2.53 ±4.27 × 10−1

β4 6.38 6.42 ±4.80 × 10−3

β5 6.37 6.37 ±6.57 × 10−3

Coefficient of
correlation

Population
correlation (r∗) MSEjk

0.929 0.896 1.61
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